Phenylboronic Acid-Mediated Tumor Targeting of Chitosan Nanoparticles
نویسندگان
چکیده
The phenylboronic acid-conjugated chitosan nanoparticles were prepared by particle surface modification. The size, zeta potential and morphology of the nanoparticles were characterized by dynamic light scattering, zeta potential measurement and transmission electron microscopy. The cellular uptake, tumor penetration, biodistribution and antitumor activity of the nanoparticles were evaluated by using monolayer cell model, 3-D multicellular spheroid model and H22 tumor-bearing mice. The incorporation of phenylboronic acid group into chitosan nanoparticles impart a surface charge-reversible characteristic to the nanoparticles. In vitro evaluation using 2-D and 3-D cell models showed that phenylboronic acid-decorated nanoparticles were more easily internalized by tumor cells compared to non-decorated chitosan nanoparticles, and could deliver more drug into tumor cells due to the active targeting effect of boronic acid group. Furthermore, the phenylboronic acid-decorated nanoparticles displayed a deeper penetration and persistent accumulation in the multicellular spheroids, resulting in better inhibition growth to multicellular spheroids than non-decorated nanoparticles. Tumor penetration, drug distribution and near infrared fluorescence imaging revealed that phenylboronic acid-decorated nanoparticles could penetrate deeper and accumulate more in tumor area than non-decorated ones. In vivo antitumor examination demonstrated that the phenylboronic acid-decorated nanoparticles have superior efficacy in restricting tumor growth and prolonging the survival time of tumor-bearing mice than free drug and drug-loaded chitosan nanoparticles.
منابع مشابه
Folic Acid-Chitosan Conjugated Nanoparticles for Improving Tumor-Targeted Drug Delivery
OBJECTIVE To prepare folic acid-chitosan conjugated nanoparticles (FA-CS NPs) and evaluate their targeting specificity on tumor cells. METHODS Chitosan (CS) NPs were prepared by ionic cross linking method, and folic acid (FA) was conjugated with CS NPs by electrostatic interaction. The properties of NPs were investigated, and doxorubicin hydrochloride (Dox) as a model drug was encapsulated fo...
متن کاملComparative study of photosensitizer loaded and conjugated glycol chitosan nanoparticles for cancer therapy.
This study reports that tumor-targeting glycol chitosan nanoparticles with physically loaded and chemically conjugated photosensitizers can be used in photodynamic therapy (PDT). First, the hydrophobic photosensitizer, chlorin e6 (Ce6), was physically loaded onto the hydrophobically-modified glycol chitosan nanoparticles (HGC), which were prepared by self-assembling amphiphilic glycol chitosan-...
متن کاملDual Tumor-Targeting Nanocarrier System for siRNA Delivery Based on pRNA and Modified Chitosan
Highly specific and efficient delivery of siRNA is still unsatisfactory. Herein, a dual tumor-targeting siRNA delivery system combining pRNA dimers with chitosan nanoparticles (CNPPs) was designed to improve the specificity and efficiency of siRNA delivery. In this dual delivery system, folate-conjugated and PEGylated chitosan nanoparticles encapsulating pRNA dimers were used as the first class...
متن کاملSynthesis of liver-targeting dual-ligand modified GCGA/5-FU nanoparticles and their characteristics in vitro and in vivo
Nanoparticle drug delivery systems using polymers hold promise for clinical applications. We synthesized dual-ligand modified chitosan (GCGA) nanoparticles using lactic acid, glycyrrhetinic acid, and chitosan to target the liver in our previous studies. We then synthesized the GCGA/5-FU nanoparticles by conjugating 5-fluorouracil (5-FU) onto the GCGA nanomaterial, which had a mean particle size...
متن کاملSynthesis of size-tunable chitosan encapsulated gold-silver nanoflowers and their application in SERS imaging of living cells.
Anisotropic metallic nanoparticles (NPs) possess unique optical properties, which lend them to applications such as surface-enhanced Raman scattering (SERS). However, their preparation by an efficient, biocompatible and high yield synthetic method is still challenging. In this work, we demonstrate a simple and reproducible way to produce chitosan (CS) encapsulated gold-silver nanoflowers by seq...
متن کامل